Title: | Observational Health Data Sciences and Informatics Report Generator |
---|---|
Description: | Extract results into R from the Observational Health Data Sciences and Informatics result database (see <https://ohdsi.github.io/Strategus/results-schema/index.html>) and generate reports/presentations via 'quarto' that summarize results in HTML format. Learn more about 'OhdsiReportGenerator' at <https://ohdsi.github.io/OhdsiReportGenerator/>. |
Authors: | Jenna Reps [aut, cre], Anthony Sena [aut] |
Maintainer: | Jenna Reps <[email protected]> |
License: | Apache License 2.0 |
Version: | 1.0.1 |
Built: | 2025-02-27 05:26:57 UTC |
Source: | https://github.com/ohdsi/ohdsireportgenerator |
Generates a presentation from a Strategus result
generatePresentationMultiple( server, username, password, dbms, resultsSchema = NULL, targetId = 1, targetName = "target cohort", cmSubsetId = 2, sccsSubsetId = NULL, indicationName = NULL, outcomeIds = 3, outcomeNames = "outcome cohort", comparatorIds = c(2, 4), comparatorNames = c("comparator cohort 1", "comparator cohort 2"), covariateIds = NULL, details = list(studyPeriod = "All Time", restrictions = "Age - None"), title = "ASSURE 001 ...", lead = "add name", date = Sys.Date(), backgroundText = "", evaluationText = "", outputLocation, outputName = paste0("presentation_", gsub(":", "_", gsub(" ", "_", as.character(date()))), ".html"), intermediateDir = tempdir() )
generatePresentationMultiple( server, username, password, dbms, resultsSchema = NULL, targetId = 1, targetName = "target cohort", cmSubsetId = 2, sccsSubsetId = NULL, indicationName = NULL, outcomeIds = 3, outcomeNames = "outcome cohort", comparatorIds = c(2, 4), comparatorNames = c("comparator cohort 1", "comparator cohort 2"), covariateIds = NULL, details = list(studyPeriod = "All Time", restrictions = "Age - None"), title = "ASSURE 001 ...", lead = "add name", date = Sys.Date(), backgroundText = "", evaluationText = "", outputLocation, outputName = paste0("presentation_", gsub(":", "_", gsub(" ", "_", as.character(date()))), ".html"), intermediateDir = tempdir() )
server |
The server containing the result database |
username |
The username for an account that can access the result database |
password |
The password for an account that can access the result database |
dbms |
The dbms used to access the result database |
resultsSchema |
The result database schema |
targetId |
The cohort definition id for the target cohort |
targetName |
A friendly name for the target cohort |
cmSubsetId |
Optional a subset ID for the cohort method/prediction results |
sccsSubsetId |
Optional a subset ID for the SCCS and characterization results |
indicationName |
A name for the indication if used or NULL |
outcomeIds |
The cohort definition id for the outcome |
outcomeNames |
Friendly names for the outcomes |
comparatorIds |
The cohort method comparator cohort id |
comparatorNames |
Friendly names for the comparators |
covariateIds |
A vector of covariateIds to include in the characterization |
details |
a list with the studyPeriod and restrictions |
title |
A title for the presentation |
lead |
The name of the presentor |
date |
The date of the presentation |
backgroundText |
a character with any background text |
evaluationText |
a list of bullet points for the evaluation |
outputLocation |
The file location and name to save the protocol |
outputName |
The name of the html protocol that is created |
intermediateDir |
The work directory for quarto |
Specify the connection details to the result database and the schema name to generate a presentation.
An named R list with the elements 'standard' and 'source'
A function to extract case series characterization results
getBinaryCaseSeries( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL )
getBinaryCaseSeries( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetId |
An integer corresponding to the target cohort ID |
outcomeId |
Am integer corresponding to the outcome cohort ID |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
A data.frame with the characterization case series results
Other Characterization:
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cs <- getBinaryCaseSeries( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cs <- getBinaryCaseSeries( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3 )
A function to extract non-case and case binary characterization results
getBinaryRiskFactors( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL, analysisIds = c(3) )
getBinaryRiskFactors( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL, analysisIds = c(3) )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetId |
An integer corresponding to the target cohort ID |
outcomeId |
Am integer corresponding to the outcome cohort ID |
analysisIds |
The feature extraction analysis ID of interest (e.g., 201 is condition) |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
A data.frame with the characterization results for the cases and non-cases
Other Characterization:
getBinaryCaseSeries()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) rf <- getBinaryRiskFactors( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) rf <- getBinaryRiskFactors( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3 )
This function extracts the feature extraction results for cases corresponding to specified target and outcome cohorts.
getCaseBinaryFeatures( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, analysisIds = c(3) )
getCaseBinaryFeatures( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, analysisIds = c(3) )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
analysisIds |
The feature extraction analysis ID of interest (e.g., 201 is condition) |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
minPriorObservation the minimum required observation days prior to index for an entry
outcomeWashoutDays patients with the outcome occurring within this number of days prior to index are excluded (NA means no exclusion)
riskWindowStart the number of days ofset the start anchor that is the start of the time-at-risk
startAnchor the start anchor is either the target cohort start or cohort end date
riskWindowEnd the number of days ofset the end anchor that is the end of the time-at-risk
endAnchor the end anchor is either the target cohort start or cohort end date
covariateName the name of the feature
sumValue the number of cases who have the feature value of 1
averageValue the mean feature value
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cbf <- getCaseBinaryFeatures( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cbf <- getCaseBinaryFeatures( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the continuous feature extraction results for cases corresponding to specified target and outcome cohorts.
getCaseContinuousFeatures( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, analysisIds = NULL )
getCaseContinuousFeatures( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, analysisIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
analysisIds |
The feature extraction analysis ID of interest (e.g., 201 is condition) |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
minPriorObservation the minimum required observation days prior to index for an entry
outcomeWashoutDays patients with the outcome occurring within this number of days prior to index are excluded (NA means no exclusion)
covariateName the name of the feature
covariateId the id of the feature
countValue the number of cases who have the feature
minValue the minimum value observed for the feature
maxValue the maximum value observed for the feature
averageValue the mean value observed for the feature
standardDeviation the standard deviation of the value observed for the feature
medianValue the median value observed for the feature
p10Value the 10th percentile of the value observed for the feature
p25Value the 25th percentile of the value observed for the feature
p75Value the 75th percentile of the value observed for the feature
p90Value the 90th percentile of the value observed for the feature
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) ccf <- getCaseContinuousFeatures( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) ccf <- getCaseContinuousFeatures( connectionHandler = connectionHandler, schema = 'main' )
This function extracts outcome cohort counts across databases in the results for specified target and outcome cohorts.
getCaseCounts( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
getCaseCounts( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
rowCount the number of entries in the cohort
personCount the number of people in the cohort
minPriorObservation the minimum required observation days prior to index for an entry
outcomeWashoutDays patients with the outcome occurring within this number of days prior to index are excluded (NA means no exclusion)
riskWindowStart the number of days ofset the start anchor that is the start of the time-at-risk
startAnchor the start anchor is either the target cohort start or cohort end date
riskWindowEnd the number of days ofset the end anchor that is the end of the time-at-risk
endAnchor the end anchor is either the target cohort start or cohort end date
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cc <- getCaseCounts( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cc <- getCaseCounts( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the age group feature extraction results for cases and targets corresponding to specified target and outcome cohorts.
getCharacterizationDemographics( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL, type = "age" )
getCharacterizationDemographics( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL, type = "age" )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetId |
An integer corresponding to the target cohort ID |
outcomeId |
Am integer corresponding to the outcome cohort ID |
type |
A character of 'age' or 'sex' |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
minPriorObservation the minimum required observation days prior to index for an entry
outcomeWashoutDays patients with the outcome occurring within this number of days prior to index are excluded (NA means no exclusion)
riskWindowStart the number of days ofset the start anchor that is the start of the time-at-risk
startAnchor the start anchor is either the target cohort start or cohort end date
riskWindowEnd the number of days ofset the end anchor that is the end of the time-at-risk
endAnchor the end anchor is either the target cohort start or cohort end date
covariateName the name of the feature
sumValue the number of cases who have the feature value of 1
averageValue the mean feature value
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
# example code conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) ageData <- getCharacterizationDemographics( connectionHandler = connectionHandler, schema = 'main' )
# example code conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) ageData <- getCharacterizationDemographics( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the cohort method diagnostics that examine whether the analyses were sufficiently powered and checks for different types of bias.
getCmDiagnosticsData( connectionHandler, schema, cmTablePrefix = "cm_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, comparatorIds = NULL )
getCmDiagnosticsData( connectionHandler, schema, cmTablePrefix = "cm_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, comparatorIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cmTablePrefix |
The prefix used for the cohort method results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
comparatorIds |
A vector of integers corresponding to the comparator cohort IDs |
Specify the connectionHandler, the schema and the target/comparator/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
analysisId the analysis unique identifier
description a description of the analysis
targetName the target cohort name
targetId the target cohort unique identifier
comparatorName the comparator cohort name
comparatorId the comparator cohort unique identifier
outcomeName the outcome name
outcomeId the outcome cohort unique identifier
maxSdm max allowed standardized difference of means when comparing the target to the comparator after PS adjustment for the ballance diagnostic diagnostic to pass.
sharedMaxSdm max allowed standardized difference of means when comparing the target to the comparator after PS adjustment for the ballance diagnostic diagnostic to pass.
equipoise the bounds on the preference score to determine whether a subject is in equipoise.
mdrr the maximum passable minimum detectable relative risk (mdrr) value. If the mdrr is greater than this the diagnostics will fail.
attritionFraction (depreciated) the minmum attrition before the diagnostics fails.
ease The expected absolute systematic error (ease) measures residual bias.
balanceDiagnostic whether the balance diagnostic passed or failed.
sharedBalanceDiagnostic whether the shared balance diagnostic passed or failed.
equipoiseDiagnostic whether the equipose diagnostic passed or failed.
mdrrDiagnostic whether the mdrr (power) diagnostic passed or failed.
attritionDiagnostic (depreciated) whether the attrition diagnostic passed or failed.
easeDiagnostic whether the ease diagnostic passed or failed.
unblind whether the results can be unblinded.
summaryValue summary of diagnostics results. FAIL, PASS or number of warnings.
Other Estimation:
getCMEstimation()
,
getCmMetaEstimation()
,
getSccsDiagnosticsData()
,
getSccsEstimation()
,
getSccsMetaEstimation()
,
plotCmEstimates()
,
plotSccsEstimates()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cmDiag <- getCmDiagnosticsData( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cmDiag <- getCmDiagnosticsData( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
This function extracts the single database cohort method estimates for results that can be unblinded and have a calibrated RR
getCMEstimation( connectionHandler, schema, cmTablePrefix = "cm_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, comparatorIds = NULL )
getCMEstimation( connectionHandler, schema, cmTablePrefix = "cm_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, comparatorIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cmTablePrefix |
The prefix used for the cohort method results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
comparatorIds |
A vector of integers corresponding to the comparator cohort IDs |
Specify the connectionHandler, the schema and the target/comparator/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
analysisId the analysis design unique identifier
description the analysis design description
targetName the target cohort name
targetId the target cohort unique identifier
comparatorName the comparator cohort name
comparatorId the comparator cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
calibratedRr the calibrated relative risk
calibratedRrCi95Lb the calibrated relative risk 95 percent confidence interval lower bound
calibratedRrCi95Ub the calibrated relative risk 95 percent confidence interval upper bound
calibratedP the two sided calibrated p value
calibratedOneSidedP the one sided calibrated p value
calibratedLogRr the calibrated relative risk logged
calibratedSeLogRr the standard error of the calibrated relative risk logged
targetSubjects the number of people in the target cohort
comparatorSubjects the number of people in the comparator cohort
targetDays the total number of days at risk across the target cohort people
comparatorDays the total number of days at risk across the comparator cohort people
targetOutcomes the total number of outcomes occuring during the time at risk for the target cohort people
comparatorOutcomes the total number of outcomes occuring during the time at risk for the comparator cohort people
targetEstimator ...
Other Estimation:
getCmDiagnosticsData()
,
getCmMetaEstimation()
,
getSccsDiagnosticsData()
,
getSccsEstimation()
,
getSccsMetaEstimation()
,
plotCmEstimates()
,
plotSccsEstimates()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cmEst <- getCMEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cmEst <- getCMEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
This function extracts any meta analysis estimation results for cohort method.
getCmMetaEstimation( connectionHandler, schema, cmTablePrefix = "cm_", cgTablePrefix = "cg_", esTablePrefix = "es_", targetIds = NULL, outcomeIds = NULL, comparatorIds = NULL )
getCmMetaEstimation( connectionHandler, schema, cmTablePrefix = "cm_", cgTablePrefix = "cg_", esTablePrefix = "es_", targetIds = NULL, outcomeIds = NULL, comparatorIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cmTablePrefix |
The prefix used for the cohort method results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
esTablePrefix |
The prefix used for the evidence synthesis results tables |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
comparatorIds |
A vector of integers corresponding to the comparator cohort IDs |
Specify the connectionHandler, the schema and the target/comparator/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
analysisId the analysis unique identifier
description a description of the analysis
targetName the target cohort name
targetId the target cohort unique identifier
comparatorName the comparator cohort name
comparatorId the comparator cohort unique identifier
outcomeName the outcome name
outcomeId the outcome cohort unique identifier
calibratedRr the calibrated relative risk
calibratedRrCi95Lb the calibrated relative risk 95 percent confidence interval lower bound
calibratedRrCi95Ub the calibrated relative risk 95 percent confidence interval upper bound
calibratedP the two sided calibrated p value
calibratedOneSidedP the one sided calibrated p value
calibratedLogRr the calibrated relative risk logged
calibratedSeLogRr the standard error of the calibrated relative risk logged
targetSubjects the number of people in the target cohort across included database
comparatorSubjects the number of people in the comparator cohort across included database
targetDays the total number of days at risk across the target cohort people across included database
comparatorDays the total number of days at risk across the comparator cohort people across included database
targetOutcomes the total number of outcomes occuring during the time at risk for the target cohort people across included database
comparatorOutcomes the total number of outcomes occuring during the time at risk for the comparator cohort people across included database
nDatabases the number of databases included
Other Estimation:
getCMEstimation()
,
getCmDiagnosticsData()
,
getSccsDiagnosticsData()
,
getSccsEstimation()
,
getSccsMetaEstimation()
,
plotCmEstimates()
,
plotSccsEstimates()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cmMeta <- getCmMetaEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cmMeta <- getCmMetaEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
This function extracts all cohort definitions for the targets of interest.
getCohortDefinitions( connectionHandler, schema, cgTablePrefix = "cg_", targetIds = NULL )
getCohortDefinitions( connectionHandler, schema, cgTablePrefix = "cg_", targetIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cgTablePrefix |
The prefix used for the cohort generator results tables |
targetIds |
A vector of integers corresponding to the target cohort IDs |
Specify the connectionHandler, the schema and the target cohort IDs
Returns a data.frame with the cohort details
Other Cohorts:
getCohortSubsetDefinitions()
,
processCohorts()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cohortDef <- getCohortDefinitions( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cohortDef <- getCohortDefinitions( connectionHandler = connectionHandler, schema = 'main' )
This function extracts all cohort subset definitions for the subsets of interest.
getCohortSubsetDefinitions( connectionHandler, schema, cgTablePrefix = "cg_", subsetIds = NULL )
getCohortSubsetDefinitions( connectionHandler, schema, cgTablePrefix = "cg_", subsetIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cgTablePrefix |
The prefix used for the cohort generator results tables |
subsetIds |
A vector of subset cohort ids or NULL |
Specify the connectionHandler, the schema and the subset IDs
Returns a data.frame with the cohort subset details
Other Cohorts:
getCohortDefinitions()
,
processCohorts()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) subsetDef <- getCohortSubsetDefinitions( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) subsetDef <- getCohortSubsetDefinitions( connectionHandler = connectionHandler, schema = 'main' )
A function to extract case series continuous feature characterization results
getContinuousCaseSeries( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL )
getContinuousCaseSeries( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetId |
An integer corresponding to the target cohort ID |
outcomeId |
Am integer corresponding to the outcome cohort ID |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
A data.frame with the characterization case series results
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cs <- getContinuousCaseSeries( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cs <- getContinuousCaseSeries( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3 )
A function to extract non-case and case continuous characterization results
getContinuousRiskFactors( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL, analysisIds = NULL )
getContinuousRiskFactors( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetId = NULL, outcomeId = NULL, analysisIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetId |
An integer corresponding to the target cohort ID |
outcomeId |
Am integer corresponding to the outcome cohort ID |
analysisIds |
The feature extraction analysis ID of interest (e.g., 201 is condition) |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
A data.frame with the characterization results for the cases and non-cases
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) rf <- getContinuousRiskFactors( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) rf <- getContinuousRiskFactors( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3 )
This function extracts all dechallenge rechallenge results across databases for specified target and outcome cohorts.
getDechallengeRechallenge( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
getDechallengeRechallenge( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
dechallengeStopInterval An integer specifying the how much time to add to the cohort_end when determining whether the event starts during cohort and ends after
dechallengeEvaluationWindow A period of time evaluated for outcome recurrence after discontinuation of exposure, among patients with challenge outcomes
numExposureEras Distinct number of exposure events (i.e. drug eras) in a given target cohort
numPersonsExposed Distinct number of people exposed in target cohort. A person must have at least 1 day exposure to be included
numCases Distinct number of persons in outcome cohort. A person must have at least 1 day of observation time to be included
dechallengeAttempt Distinct count of people with observable time after discontinuation of the exposure era during which the challenge outcome occurred
dechallengeFail Among people with challenge outcomes, the distinct number of people with outcomes during dechallengeEvaluationWindow
dechallengeSuccess Among people with challenge outcomes, the distinct number of people without outcomes during the dechallengeEvaluationWindow
rechallengeAttempt Number of people with a new exposure era after the occurrence of an outcome during a prior exposure era
rechallengeFail Number of people with a new exposure era during which an outcome occurred, after the occurrence of an outcome during a prior exposure era
rechallengeSuccess Number of people with a new exposure era during which an outcome did not occur, after the occurrence of an outcome during a prior exposure era
pctDechallengeAttempt Percent of people with observable time after discontinuation of the exposure era during which the challenge outcome occurred
pctDechallengeFail Among people with challenge outcomes, the percent of people without outcomes during the dechallengeEvaluationWindow
pctDechallengeSuccess Among people with challenge outcomes, the percent of people with outcomes during dechallengeEvaluationWindow
pctRechallengeAttempt Percent of people with a new exposure era after the occurrence of an outcome during a prior exposure era
pctRechallengeFail Percent of people with a new exposure era during which an outcome did not occur, after the occurrence of an outcome during a prior exposure era
pctRechallengeSuccess Percent of people with a new exposure era during which an outcome occurred, after the occurrence of an outcome during a prior exposure era
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) dcrc <- getDechallengeRechallenge( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) dcrc <- getDechallengeRechallenge( connectionHandler = connectionHandler, schema = 'main' )
This returns an object of class 'ConnectionDetails' that lets you connect via 'DatabaseConnector::connect()' to the example result database.
getExampleConnectionDetails(exdir = tempdir())
getExampleConnectionDetails(exdir = tempdir())
exdir |
a directory to unzip the example result data into. Default is tempdir(). |
Finds the location of the example result database in the package and calls 'DatabaseConnector::createConnectionDetails' to create a 'ConnectionDetails' object for connecting to the database.
An object of class 'ConnectionDetails' with the details to connect to the example OHDSI result database
Other helper:
kableDark()
,
printReactable()
,
removeSpaces()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)
This function extracts all incidence rates across databases in the results for specified target and outcome cohorts.
getIncidenceRates( connectionHandler, schema, ciTablePrefix = "ci_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
getIncidenceRates( connectionHandler, schema, ciTablePrefix = "ci_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
ciTablePrefix |
The prefix used for the cohort incidence results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
cleanWindow clean windown around outcome
subgroupName name for the result subgroup
ageGroupName name for the result age group
genderName name for the result gender group
startYear name for the result start year
tarStartWith time at risk start reference
tarStartOffset time at risk start offset from reference
tarEndWith time at risk end reference
tarEndOffset time at risk end offset from reference
personsAtRiskPe persons at risk per event
personsAtRisk persons at risk
personDaysPe person days per event
personDays person days
personOutcomesPe person outcome per event
personOutcomes persons outcome
outcomesPe number of outcome per event
outcomes number of outcome
incidenceProportionP100p incidence proportion per 100 persons
incidenceRateP100py incidence rate per 100 person years
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) ir <- getIncidenceRates( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) ir <- getIncidenceRates( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the target and outcome cohorts used to develop any model in the results
getPredictionCohorts( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_" )
getPredictionCohorts( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_" )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
Specify the connectionHandler, the resultDatabaseSettings and any targetIds or outcomeIds to restrict models to
Returns a data.frame with the columns:
cohortId the cohort definition ID
cohortName the name of the cohort
type whether the cohort was used as a target or outcome cohort
Other Prediction:
getPredictionDiagnosticTable()
,
getPredictionDiagnostics()
,
getPredictionHyperParamSearch()
,
getPredictionIntercept()
,
getPredictionModelDesigns()
,
getPredictionPerformanceTable()
,
getPredictionPerformances()
,
getPredictionTopPredictors()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) predCohorts <- getPredictionCohorts( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) predCohorts <- getPredictionCohorts( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the PROBAST diagnostics
getPredictionDiagnostics( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", databaseTablePrefix = "", modelDesignId = NULL, threshold1_2 = 0.9 )
getPredictionDiagnostics( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", databaseTablePrefix = "", modelDesignId = NULL, threshold1_2 = 0.9 )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
databaseTablePrefix |
The prefix for the database table either ” or 'plp_' |
modelDesignId |
The identifier for a model design to restrict results to |
threshold1_2 |
A threshold for probast 1.2 |
Specify the connectionHandler, the resultDatabaseSettings and (optionally) a modelDesignId and threshold1_2 a threshold value to use for the PROBAST 1.2
Returns a data.frame with the columns:
modelDesignId the unique identifier for the model design
diagnosticId the unique identifier for diagnostic result
developmentDatabaseName the name for the database used to develop the model
developmentTargetName the name for the development target population
developmentOutcomeName the name for the development outcome
probast1_1 Were appropriate data sources used, e.g., cohort, RCT, or nested case-control study data?
probast1_2 Were all inclusions and exclusions of paticipants appropriate?
probast2_1 Were predictors defined and assessed in a similar way for all participants?
probast2_2 Were predictors assessments made without knowledge of outcome data?
probast2_3 All all predictors available at the time the model is intended to be used?
probast3_4 Was the outcome defined and determined in a similar way for all participants?
probast3_6 Was the time interval between predictor assessment and outcome determination appropriate?
probast4_1 Were there a reasonable number of participants with the outcome?
Other Prediction:
getPredictionCohorts()
,
getPredictionDiagnosticTable()
,
getPredictionHyperParamSearch()
,
getPredictionIntercept()
,
getPredictionModelDesigns()
,
getPredictionPerformanceTable()
,
getPredictionPerformances()
,
getPredictionTopPredictors()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) diag <- getPredictionDiagnostics( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) diag <- getPredictionDiagnostics( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the specified diagnostic table
getPredictionDiagnosticTable( connectionHandler, schema, plpTablePrefix = "plp_", table = "diagnostic_participants", diagnosticId = NULL )
getPredictionDiagnosticTable( connectionHandler, schema, plpTablePrefix = "plp_", table = "diagnostic_participants", diagnosticId = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
table |
The table to extract |
diagnosticId |
(optional) restrict to the input diagnosticId |
Specify the connectionHandler, the resultDatabaseSettings, the table of interest and (optionally) a diagnosticId to filter to
Returns a data.frame with the specified table
Other Prediction:
getPredictionCohorts()
,
getPredictionDiagnostics()
,
getPredictionHyperParamSearch()
,
getPredictionIntercept()
,
getPredictionModelDesigns()
,
getPredictionPerformanceTable()
,
getPredictionPerformances()
,
getPredictionTopPredictors()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) diagPred <- getPredictionDiagnosticTable( connectionHandler = connectionHandler, schema = 'main', table = 'diagnostic_predictors' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) diagPred <- getPredictionDiagnosticTable( connectionHandler = connectionHandler, schema = 'main', table = 'diagnostic_predictors' )
This function extracts the hyper parameters details
getPredictionHyperParamSearch( connectionHandler, schema, plpTablePrefix = "plp_", modelDesignId = NULL, databaseId = NULL )
getPredictionHyperParamSearch( connectionHandler, schema, plpTablePrefix = "plp_", modelDesignId = NULL, databaseId = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
modelDesignId |
The identifier for a model design to restrict to |
databaseId |
The identifier for the development database to restrict to |
Specify the connectionHandler, the resultDatabaseSettings, the modelDesignId and the databaseId
Returns a data.frame with the columns:
metric the hyperparameter optimization metric
fold the fold in cross validation
value the metric value for the fold with the specified hyperparameter combination
plus columns for all the hyperparameters and their values
Other Prediction:
getPredictionCohorts()
,
getPredictionDiagnosticTable()
,
getPredictionDiagnostics()
,
getPredictionIntercept()
,
getPredictionModelDesigns()
,
getPredictionPerformanceTable()
,
getPredictionPerformances()
,
getPredictionTopPredictors()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) hyperParams <- getPredictionHyperParamSearch( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) hyperParams <- getPredictionHyperParamSearch( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the interception value
getPredictionIntercept( connectionHandler, schema, plpTablePrefix = "plp_", modelDesignId = NULL, databaseId = NULL )
getPredictionIntercept( connectionHandler, schema, plpTablePrefix = "plp_", modelDesignId = NULL, databaseId = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
modelDesignId |
The identifier for a model design to restrict to |
databaseId |
The identifier for the development database to restrict to |
Specify the connectionHandler, the resultDatabaseSettings, the modelDesignId and the databaseId
Returns a single value corresponding to the model intercept or NULL if not a logistic regression model
Other Prediction:
getPredictionCohorts()
,
getPredictionDiagnosticTable()
,
getPredictionDiagnostics()
,
getPredictionHyperParamSearch()
,
getPredictionModelDesigns()
,
getPredictionPerformanceTable()
,
getPredictionPerformances()
,
getPredictionTopPredictors()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) intercepts <- getPredictionIntercept( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) intercepts <- getPredictionIntercept( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the model design settings and min/max/mean AUROC values of the models developed using the model design across databases
getPredictionModelDesigns( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_", targetIds = NULL, outcomeIds = NULL )
getPredictionModelDesigns( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the resultDatabaseSettings and (optionally) any targetIds or outcomeIds to restrict model designs to
Returns a data.frame with the columns:
modelDesignId a unique identifier in the database for the model design
modelType the type of classifier or surival model
developmentTargetId a unique identifier for the development target ID
developmentTargetName the name of the development target cohort
developmentTargetJson the json of the target cohort
developmentOutcomeId a unique identifier for the development outcome ID
developmentOutcomeName the name of the development outcome cohort
timeAtRisk the time at risk string
developmentOutcomeJson the json of the outcome cohort
covariateSettingsJson the covariate settings json
populationSettingsJson the population settings json
tidyCovariatesSettingsJson the tidy covariate settings json
plpDataSettingsJson the plp data extraction settings json
featureEngineeringSettingsJson the feature engineering settings json
splitSettingsJson the split settings json
sampleSettingsJson the sample settings json
minAuroc the min AUROC value of models developed using the model design across databases
meanAuroc the mean AUROC value of models developed using the model design across databases
maxAuroc the max AUROC value of models developed using the model design across databases
noDiagnosticDatabases the number of databases where the model design diagnostics were generated
noDevelopmentDatabases the number of databases where the model design was used to develop models
noValidationDatabases the number of databases where the models developed using the model design was externally validated
Other Prediction:
getPredictionCohorts()
,
getPredictionDiagnosticTable()
,
getPredictionDiagnostics()
,
getPredictionHyperParamSearch()
,
getPredictionIntercept()
,
getPredictionPerformanceTable()
,
getPredictionPerformances()
,
getPredictionTopPredictors()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) modDesign <- getPredictionModelDesigns( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) modDesign <- getPredictionModelDesigns( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the model performances
getPredictionPerformances( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", databaseTablePrefix = "", modelDesignId = NULL, developmentDatabaseId = NULL )
getPredictionPerformances( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", databaseTablePrefix = "", modelDesignId = NULL, developmentDatabaseId = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
databaseTablePrefix |
A prefix to the database table, either ” or 'plp_' |
modelDesignId |
The identifier for a model design to restrict results to |
developmentDatabaseId |
The identifier for the development database to restrict results to |
Specify the connectionHandler, the resultDatabaseSettings and (optionally) a modelDesignId and/or developmentDatabaseId to restrict models to
Returns a data.frame with the columns:
performanceId the unique identifier for the performance
modelDesignId the unique identifier for the model design
developmentDatabaseId the unique identifier for the database used to develop the model
validationDatabaseId the unique identifier for the database used to validate the model
developmentTargetId the unique cohort id for the development target population
developmentTargetName the name for the development target population
developmentOutcomeId the unique cohort id for the development outcome
developmentOutcomeName the name for the development outcome
developmentDatabase the name for the database used to develop the model
validationDatabase the name for the database used to validate the model
validationTargetName the name for the validation target population
validationOutcomeName the name for the validation outcome
timeStamp the date/time when the analysis occurred
auroc the test/validation AUROC value for the model
auroc95lb the test/validation lower bound of the 95 percent CI AUROC value for the model
auroc95ub the test/validation upper bound of the 95 percent CI AUROC value for the model
calibrationInLarge the test/validation calibration in the large value for the model
eStatistic the test/validation calibration e-statistic value for the model
brierScore the test/validation brier value for the model
auprc the test/validation discrimination AUPRC value for the model
populationSize the test/validation population size used to develop the model
outcomeCount the test/validation outcome count used to develop the model
evalPercent the percentage of the development data used as the test set
outcomePercent the outcome percent in the development data
validationTimeAtRisk time at risk for the validation
predictionResultType development or validation
Other Prediction:
getPredictionCohorts()
,
getPredictionDiagnosticTable()
,
getPredictionDiagnostics()
,
getPredictionHyperParamSearch()
,
getPredictionIntercept()
,
getPredictionModelDesigns()
,
getPredictionPerformanceTable()
,
getPredictionTopPredictors()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) perf <- getPredictionPerformances( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) perf <- getPredictionPerformances( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the specified table
getPredictionPerformanceTable( connectionHandler, schema, plpTablePrefix = "plp_", table = "attrition", performanceId = NULL )
getPredictionPerformanceTable( connectionHandler, schema, plpTablePrefix = "plp_", table = "attrition", performanceId = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
table |
The table to extract |
performanceId |
(optional) restrict to the input performanceId |
Specify the connectionHandler, the resultDatabaseSettings, the table of interest and (optionally) a performanceId to filter to
Returns a data.frame with the specified table
Other Prediction:
getPredictionCohorts()
,
getPredictionDiagnosticTable()
,
getPredictionDiagnostics()
,
getPredictionHyperParamSearch()
,
getPredictionIntercept()
,
getPredictionModelDesigns()
,
getPredictionPerformances()
,
getPredictionTopPredictors()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) attrition <- getPredictionPerformanceTable( connectionHandler = connectionHandler, schema = 'main', table = 'attrition' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) attrition <- getPredictionPerformanceTable( connectionHandler = connectionHandler, schema = 'main', table = 'attrition' )
This function extracts the top N predictors per model from the prediction results tables
getPredictionTopPredictors( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_", targetIds = NULL, outcomeIds = NULL, numberPredictors = 100 )
getPredictionTopPredictors( connectionHandler, schema, plpTablePrefix = "plp_", cgTablePrefix = "cg_", targetIds = NULL, outcomeIds = NULL, numberPredictors = 100 )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
plpTablePrefix |
The prefix used for the patient level prediction results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
numberPredictors |
the number of predictors per model to return |
Specify the connectionHandler, the resultDatabaseSettings and (optionally) any targetIds or outcomeIds to restrict models to
Returns a data.frame with the columns:
databaseName the name of the database the model was developed on
tarStartDay the time-at-risk start day
tarStartAnchor whether the time-at-risk start is relative to cohort start or end
tarEndDay the time-at-risk end day
tarEndAnchor whether the time-at-risk end is relative to cohort start or end
performanceId a unique identifier for the performance
covariateId the FeatureExtraction covariate identifier
covariateName the name of the covariate
conceptId the covariates corresponding concept or 0
covariateValue the feature importance or coefficient value
covariateCount how many people had the covariate
covariateMean the fraction of the target population with the covariate
covariateStDev the standard deviation
withNoOutcomeCovariateCount the number of the target population without the outcome with the covariate
withNoOutcomeCovariateMean the fraction of the target population without the outcome with the covariate
withNoOutcomeCovariateStDev the covariate standard deviation of the target population without the outcome
withOutcomeCovariateCount the number of the target population with the outcome with the covariate
withOutcomeCovariateMean the fraction of the target population with the outcome with the covariate
withOutcomeCovariateStDev the covariate standard deviation of the target population with the outcome
standardizedMeanDiff the standardized mean difference comparing the target population with outcome and without the outcome
rn the row number showing the covariate rank
Other Prediction:
getPredictionCohorts()
,
getPredictionDiagnosticTable()
,
getPredictionDiagnostics()
,
getPredictionHyperParamSearch()
,
getPredictionIntercept()
,
getPredictionModelDesigns()
,
getPredictionPerformanceTable()
,
getPredictionPerformances()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) topPreds <- getPredictionTopPredictors( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) topPreds <- getPredictionTopPredictors( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
This function extracts the sccs diagnostics that examine whether the analyses were sufficiently powered and checks for different types of bias.
getSccsDiagnosticsData( connectionHandler, schema, sccsTablePrefix = "sccs_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
getSccsDiagnosticsData( connectionHandler, schema, sccsTablePrefix = "sccs_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
sccsTablePrefix |
The prefix used for the cohort generator results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the database name
analysisId the analysis unique identifier
description an analysis description
targetName the target name
targetId the target cohort id
outcomeName the outcome name
outcomeId the outcome cohort id
covariateName whether main or secondary analysis
mdrr the maximum passable minimum detectable relative risk (mdrr) value. If the mdrr is greater than this the diagnostics will fail.
ease The expected absolute systematic error (ease) measures residual bias.
timeTrendP The p for whether the mean monthly ratio between observed and expected is no greater than 1.25.
preExposureP One-sided p-value for whether the rate before expore is higher than after, against the null of no difference.
mdrrDiagnostic whether the mdrr (power) diagnostic passed or failed.
easeDiagnostic whether the ease diagnostic passed or failed.
timeTrendDiagnostic Pass / warning / fail / not evaluated classification of the time trend (unstalbe months) diagnostic.
preExposureDiagnostic Pass / warning / fail / not evaluated classification of the time trend (unstalbe months) diagnostic.
unblind whether the results can be unblinded.
unblindForEvidenceSynthesis whether the results can be unblinded for the meta analysis.
summaryValue summary of diagnostics results. FAIL, PASS or number of warnings.
Other Estimation:
getCMEstimation()
,
getCmDiagnosticsData()
,
getCmMetaEstimation()
,
getSccsEstimation()
,
getSccsMetaEstimation()
,
plotCmEstimates()
,
plotSccsEstimates()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sccsDiag <- getSccsDiagnosticsData( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sccsDiag <- getSccsDiagnosticsData( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
This function extracts the single database sccs estimates
getSccsEstimation( connectionHandler, schema, sccsTablePrefix = "sccs_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
getSccsEstimation( connectionHandler, schema, sccsTablePrefix = "sccs_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
sccsTablePrefix |
The prefix used for the cohort generator results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the database name
analysisId the analysis unique identifier
description an analysis description
targetName the target name
targetId the target cohort id
outcomeName the outcome name
outcomeId the outcome cohort id
covariateName whether main or secondary analysis
outcomeSubjects The number of subjects with at least one outcome.
outcomeEvents The number of outcome events.
outcomeObservationPeriods The number of observation periods containing at least one outcome.
covariateSubjects The number of subjects having the covariate.
covariateDays The total covariate time in days.
covariateEras The number of continuous eras of the covariate.
covariateOutcomes The number of outcomes observed during the covariate time.
observedDays The number of days subjects were observed.
rr the relative risk
ci95Lb the lower bound of the 95 percent confidence interval for the relative risk
ci95Ub the upper bound of the 95 percent confidence interval for the relative risk
p the p-value for the relative risk
logRr the log of the relative risk
seLogRr the standard error or the log of the relative risk
calibratedRr the calibrated relative risk
calibratedCi95Lb the lower bound of the 95 percent confidence interval for the calibrated relative risk
calibratedCi95Ub the upper bound of the 95 percent confidence interval for the calibrated relative risk
calibratedP the calibrated p-value
calibratedLogRr the calibrated log of the relative risk
calibratedSeLogRr the calibrated log of the relative risk standard error
llr The log of the likelihood ratio (of the MLE vs the null hypothesis of no effect).
mdrr The minimum detectable relative risk.
unblind Whether the results can be unblinded
Other Estimation:
getCMEstimation()
,
getCmDiagnosticsData()
,
getCmMetaEstimation()
,
getSccsDiagnosticsData()
,
getSccsMetaEstimation()
,
plotCmEstimates()
,
plotSccsEstimates()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sccsEst <- getSccsEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sccsEst <- getSccsEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
This function extracts any meta analysis estimation results for sccs.
getSccsMetaEstimation( connectionHandler, schema, sccsTablePrefix = "sccs_", cgTablePrefix = "cg_", esTablePrefix = "es_", targetIds = NULL, outcomeIds = NULL )
getSccsMetaEstimation( connectionHandler, schema, sccsTablePrefix = "sccs_", cgTablePrefix = "cg_", esTablePrefix = "es_", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
sccsTablePrefix |
The prefix used for the cohort generator results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
esTablePrefix |
The prefix used for the evidence synthesis results tables |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the schema and the targetoutcome cohort IDs
Returns a data.frame with the columns:
#'
databaseName the database name
analysisId the analysis unique identifier
description an analysis description
targetName the target name
targetId the target cohort id
outcomeName the outcome name
outcomeId the outcome cohort id
covariateName whether main or secondary analysis
outcomeSubjects The number of subjects with at least one outcome.
outcomeEvents The number of outcome events.
outcomeObservationPeriods The number of observation periods containing at least one outcome.
covariateSubjects The number of subjects having the covariate.
covariateDays The total covariate time in days.
covariateEras The number of continuous eras of the covariate.
covariateOutcomes The number of outcomes observed during the covariate time.
observedDays The number of days subjects were observed.
calibratedRr the calibrated relative risk
calibratedCi95Lb the lower bound of the 95 percent confidence interval for the calibrated relative risk
calibratedCi95Ub the upper bound of the 95 percent confidence interval for the calibrated relative risk
calibratedP the calibrated p-value
calibratedOneSidedP the calibrated one sided p-value
calibratedLogRr the calibrated log of the relative risk
calibratedSeLogRr the calibrated log of the relative risk standard error
nDatabases The number of databases included in the estimate.
Other Estimation:
getCMEstimation()
,
getCmDiagnosticsData()
,
getCmMetaEstimation()
,
getSccsDiagnosticsData()
,
getSccsEstimation()
,
plotCmEstimates()
,
plotSccsEstimates()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sccsMeta <- getSccsMetaEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sccsMeta <- getSccsMetaEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 )
This function extracts the feature extraction results for targets corresponding to specified target and outcome cohorts.
getTargetBinaryFeatures( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, analysisIds = c(3) )
getTargetBinaryFeatures( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL, analysisIds = c(3) )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
analysisIds |
The feature extraction analysis ID of interest (e.g., 201 is condition) |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
minPriorObservation the minimum required observation days prior to index for an entry
outcomeWashoutDays patients with the outcome occurring within this number of days prior to index are excluded (NA means no exclusion)
covariateName the name of the feature
sumValue the number of cases who have the feature value of 1
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) tbf <- getTargetBinaryFeatures ( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) tbf <- getTargetBinaryFeatures ( connectionHandler = connectionHandler, schema = 'main' )
This function extracts the continuous feature extraction results for targets corresponding to specified target cohorts.
getTargetContinuousFeatures( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, analysisIds = NULL )
getTargetContinuousFeatures( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, analysisIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
analysisIds |
The feature extraction analysis ID of interest (e.g., 201 is condition) |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
minPriorObservation the minimum required observation days prior to index for an entry
covariateName the name of the feature
covariateId the id of the feature
countValue the number of cases who have the feature
minValue the minimum value observed for the feature
maxValue the maximum value observed for the feature
averageValue the mean value observed for the feature
standardDeviation the standard deviation of the value observed for the feature
medianValue the median value observed for the feature
p10Value the 10th percentile of the value observed for the feature
p25Value the 25th percentile of the value observed for the feature
p75Value the 75th percentile of the value observed for the feature
p90Value the 90th percentile of the value observed for the feature
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) tcf <- getTargetContinuousFeatures( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) tcf <- getTargetContinuousFeatures( connectionHandler = connectionHandler, schema = 'main' )
This function extracts target cohort counts across databases in the results for specified target and outcome cohorts.
getTargetCounts( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
getTargetCounts( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
rowCount the number of entries in the cohort
personCount the number of people in the cohort
minPriorObservation the minimum required observation days prior to index for an entry
outcomeWashoutDays patients with the outcome occurring within this number of days prior to index are excluded (NA means no exclusion)
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTimeToEvent()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) tc <- getTargetCounts( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) tc <- getTargetCounts( connectionHandler = connectionHandler, schema = 'main' )
This function extracts all time to event results across databases for specified target and outcome cohorts.
getTimeToEvent( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
getTimeToEvent( connectionHandler, schema, cTablePrefix = "c_", cgTablePrefix = "cg_", databaseTable = "database_meta_data", targetIds = NULL, outcomeIds = NULL )
connectionHandler |
A connection handler that connects to the database and extracts sql queries. Create a connection handler via 'ResultModelManager::ConnectionHandler$new()'. |
schema |
The result database schema (e.g., 'main' for sqlite) |
cTablePrefix |
The prefix used for the characterization results tables |
cgTablePrefix |
The prefix used for the cohort generator results tables |
databaseTable |
The name of the table with the database details (default 'database_meta_data') |
targetIds |
A vector of integers corresponding to the target cohort IDs |
outcomeIds |
A vector of integers corresponding to the outcome cohort IDs |
Specify the connectionHandler, the schema and the target/outcome cohort IDs
Returns a data.frame with the columns:
databaseName the name of the database
targetName the target cohort name
targetId the target cohort unique identifier
outcomeName the outcome name
outcomeId the outcome unique identifier
outcomeType Whether the outcome is the first or subsequent
targetOutcomeType The interval that the outcome occurs
timeToEvent The number of days from index
numEvents The number of target cohort entries
timeScale The correspondin time-scale
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
plotAgeDistributions()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) tte <- getTimeToEvent( connectionHandler = connectionHandler, schema = 'main' )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) tte <- getTimeToEvent( connectionHandler = connectionHandler, schema = 'main' )
This returns a html table with the input data
kableDark(data, caption = NULL, position = NULL)
kableDark(data, caption = NULL, position = NULL)
data |
A data.frame containing data of interest to show via a table |
caption |
A caption for the table |
position |
The position for the table if used within a quarto document. This is the "real" or say floating position for the latex table environment. The kable only puts tables in a table environment when a caption is provided. That is also the reason why your tables will be floating around if you specify captions for your table. Possible choices are h (here), t (top, default), b (bottom) and p (on a dedicated page). |
Input the data that you want to be shown via a dark html table
An object of class 'knitr_kable' that will show the data via a nice html table
Other helper:
getExampleConnectionDetails()
,
printReactable()
,
removeSpaces()
kableDark( data = data.frame(a=1,b=4), caption = 'A made up table to demonstrate this function', position = 'h' )
kableDark( data = data.frame(a=1,b=4), caption = 'A made up table to demonstrate this function', position = 'h' )
A package for extracting analyses results and creating reports.
Maintainer: Jenna Reps [email protected]
Authors:
Anthony Sena [email protected]
Useful links:
Report bugs at https://github.com/OHDSI/OhdsiReportGenerator/issues
Creates bar charts for the target and case age groups.
plotAgeDistributions( ageData, riskWindowStart = "1", riskWindowEnd = "365", startAnchor = "cohort start", endAnchor = "cohort start" )
plotAgeDistributions( ageData, riskWindowStart = "1", riskWindowEnd = "365", startAnchor = "cohort start", endAnchor = "cohort start" )
ageData |
The age data extracted using 'getCharacterizationDemographics(type = 'age')' |
riskWindowStart |
The time at risk window start |
riskWindowEnd |
The time at risk window end |
startAnchor |
The anchor for the time at risk start |
endAnchor |
The anchor for the time at risk end |
Input the data returned from 'getCharacterizationDemographics(type = 'age')' and the time-at-risk
Returns a ggplot with the distributions
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotSexDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) ageData <- getCharacterizationDemographics( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3, type = 'age' ) plotAgeDistributions(ageData = ageData)
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) ageData <- getCharacterizationDemographics( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3, type = 'age' ) plotAgeDistributions(ageData = ageData)
Creates nice cohort method plots
plotCmEstimates( cmData, cmMeta = NULL, targetName, comparatorName, selectedAnalysisId )
plotCmEstimates( cmData, cmMeta = NULL, targetName, comparatorName, selectedAnalysisId )
cmData |
The cohort method data |
cmMeta |
(optional) The cohort method evidence synthesis data |
targetName |
A friendly name for the target cohort |
comparatorName |
A friendly name for the comparator cohort |
selectedAnalysisId |
The analysis ID of interest to plot |
Input the cohort method data
Returns a ggplot with the estimates
Other Estimation:
getCMEstimation()
,
getCmDiagnosticsData()
,
getCmMetaEstimation()
,
getSccsDiagnosticsData()
,
getSccsEstimation()
,
getSccsMetaEstimation()
,
plotSccsEstimates()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cmEst <- getCMEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 ) plotCmEstimates( cmData = cmEst, cmMeta = NULL, targetName = 'target', comparatorName = 'comp', selectedAnalysisId = 1 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cmEst <- getCMEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 ) plotCmEstimates( cmData = cmEst, cmMeta = NULL, targetName = 'target', comparatorName = 'comp', selectedAnalysisId = 1 )
Creates nice self controlled case series plots
plotSccsEstimates(sccsData, sccsMeta = NULL, targetName, selectedAnalysisId)
plotSccsEstimates(sccsData, sccsMeta = NULL, targetName, selectedAnalysisId)
sccsData |
The self controlled case series data |
sccsMeta |
(optional) The self controlled case seriesd evidence synthesis data |
targetName |
A friendly name for the target cohort |
selectedAnalysisId |
The analysis ID of interest to plot |
Input the self controlled case series data
Returns a ggplot with the estimates
Other Estimation:
getCMEstimation()
,
getCmDiagnosticsData()
,
getCmMetaEstimation()
,
getSccsDiagnosticsData()
,
getSccsEstimation()
,
getSccsMetaEstimation()
,
plotCmEstimates()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sccsEst <- getSccsEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 ) plotSccsEstimates( sccsData = sccsEst, sccsMeta = NULL, targetName = 'target', selectedAnalysisId = 1 )
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sccsEst <- getSccsEstimation( connectionHandler = connectionHandler, schema = 'main', targetIds = 1, outcomeIds = 3 ) plotSccsEstimates( sccsData = sccsEst, sccsMeta = NULL, targetName = 'target', selectedAnalysisId = 1 )
Creates bar charts for the target and case sex.
plotSexDistributions( sexData, riskWindowStart = "1", riskWindowEnd = "365", startAnchor = "cohort start", endAnchor = "cohort start" )
plotSexDistributions( sexData, riskWindowStart = "1", riskWindowEnd = "365", startAnchor = "cohort start", endAnchor = "cohort start" )
sexData |
The sex data extracted using 'getCharacterizationDemographics(type = 'sex')' |
riskWindowStart |
The time at risk window start |
riskWindowEnd |
The time at risk window end |
startAnchor |
The anchor for the time at risk start |
endAnchor |
The anchor for the time at risk end |
Input the data returned from 'getCharacterizationDemographics(type = 'sex')' and the time-at-risk
Returns a ggplot with the distributions
Other Characterization:
getBinaryCaseSeries()
,
getBinaryRiskFactors()
,
getCaseBinaryFeatures()
,
getCaseContinuousFeatures()
,
getCaseCounts()
,
getCharacterizationDemographics()
,
getContinuousCaseSeries()
,
getContinuousRiskFactors()
,
getDechallengeRechallenge()
,
getIncidenceRates()
,
getTargetBinaryFeatures()
,
getTargetContinuousFeatures()
,
getTargetCounts()
,
getTimeToEvent()
,
plotAgeDistributions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sexData <- getCharacterizationDemographics( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3, type = 'sex' ) plotSexDistributions(sexData = sexData)
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) sexData <- getCharacterizationDemographics( connectionHandler = connectionHandler, schema = 'main', targetId = 1, outcomeId = 3, type = 'sex' ) plotSexDistributions(sexData = sexData)
This function lets you print a reactable in a quarto document
printReactable( data, columns = NULL, groupBy = NULL, defaultPageSize = 20, highlight = TRUE, striped = TRUE )
printReactable( data, columns = NULL, groupBy = NULL, defaultPageSize = 20, highlight = TRUE, striped = TRUE )
data |
The data for the table |
columns |
The formating for the columns |
groupBy |
A column or columns to group the table by |
defaultPageSize |
The number of rows in the table |
highlight |
whether to highlight the row of interest |
striped |
whether the rows change color to give a striped appearance |
Input the values for reactable::reactable
Nothing but the html code for the table is printed (to be used in a quarto document)
Other helper:
getExampleConnectionDetails()
,
kableDark()
,
removeSpaces()
printReactable( data = data.frame(a=1,b=4) )
printReactable( data = data.frame(a=1,b=4) )
This function lets you split the cohort data.frame into the parents and the children per parent.
processCohorts(cohort)
processCohorts(cohort)
cohort |
The data.frame extracted using 'getCohortDefinitions()' |
Finds the parent cohorts and children cohorts
Returns a list containing parents: a named vector of all the parent cohorts and cohortList: a list the same length as the parent vector with the first element containing all the children of the first parent cohort, the second element containing the children of the second parent, etc.
Other Cohorts:
getCohortDefinitions()
,
getCohortSubsetDefinitions()
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cohortDef <- getCohortDefinitions( connectionHandler = connectionHandler, schema = 'main' ) parents <- processCohorts(cohortDef)
conDet <- getExampleConnectionDetails() connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet) cohortDef <- getCohortDefinitions( connectionHandler = connectionHandler, schema = 'main' ) parents <- processCohorts(cohortDef)
Removes spaces and replaces with under scroll
removeSpaces(x)
removeSpaces(x)
x |
A string |
Removes spaces and replaces with under scroll
A string without spaces
Other helper:
getExampleConnectionDetails()
,
kableDark()
,
printReactable()
removeSpaces(' made up. string')
removeSpaces(' made up. string')