Package 'Characterization'

Title: Implement Descriptive Studies Using the Common Data Model
Description: An end-to-end framework that enables users to implement various descriptive studies for a given set of target and outcome cohorts for data mapped to the Observational Medical Outcomes Partnership Common Data Model.
Authors: Jenna Reps [aut, cre], Patrick Ryan [aut], Chris Knoll [aut]
Maintainer: Jenna Reps <[email protected]>
License: Apache License 2.0
Version: 2.1.3
Built: 2025-03-05 05:25:17 UTC
Source: https://github.com/ohdsi/characterization

Help Index


Removes csv files from folders that have not been marked as completed and removes the record of the execution file

Description

Removes csv files from folders that have not been marked as completed and removes the record of the execution file

Usage

cleanIncremental(executionFolder, ignoreWhenEmpty = FALSE)

Arguments

executionFolder

The folder that has the execution files

ignoreWhenEmpty

When TRUE, if there are no incremental logs then nothing is run

Value

A list with the settings

See Also

Other Incremental: cleanNonIncremental()

Examples

cleanIncremental(
  file.path(tempdir(), 'incremental'),
  ignoreWhenEmpty = TRUE
)

Removes csv files from the execution folder as there should be no csv files when running in non-incremental model

Description

Removes csv files from the execution folder as there should be no csv files when running in non-incremental model

Usage

cleanNonIncremental(executionFolder)

Arguments

executionFolder

The folder that has the execution files

Value

A list with the settings

See Also

Other Incremental: cleanIncremental()

Examples

# example code

cleanNonIncremental(file.path(tempdir(), 'incremental'))

Compute dechallenge rechallenge study

Description

Compute dechallenge rechallenge study

Usage

computeDechallengeRechallengeAnalyses(
  connectionDetails = NULL,
  targetDatabaseSchema,
  targetTable,
  outcomeDatabaseSchema = targetDatabaseSchema,
  outcomeTable = targetTable,
  tempEmulationSchema = getOption("sqlRenderTempEmulationSchema"),
  settings,
  databaseId = "database 1",
  outputFolder,
  minCellCount = 0,
  ...
)

Arguments

connectionDetails

An object of type 'connectionDetails' as created using the [DatabaseConnector::createConnectionDetails()] function.

targetDatabaseSchema

Schema name where your target cohort table resides. Note that for SQL Server, this should include both the database and schema name, for example 'scratch.dbo'.

targetTable

Name of the target cohort table.

outcomeDatabaseSchema

Schema name where your outcome cohort table resides. Note that for SQL Server, this should include both the database and schema name, for example 'scratch.dbo'.

outcomeTable

Name of the outcome cohort table.

tempEmulationSchema

Some database platforms like Oracle and Impala do not truly support temp tables. To emulate temp tables, provide a schema with write privileges where temp tables can be created

settings

The settings for the timeToEvent study

databaseId

An identifier for the database (string)

outputFolder

A directory to save the results as csv files

minCellCount

The minimum cell value to display, values less than this will be replaced by -1

...

extra inputs

Value

An Andromeda::andromeda() object containing the dechallenge rechallenge results

See Also

Other DechallengeRechallenge: computeRechallengeFailCaseSeriesAnalyses(), createDechallengeRechallengeSettings()

Examples

conDet <- exampleOmopConnectionDetails()

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

computeDechallengeRechallengeAnalyses(
  connectionDetails = conDet,
  targetDatabaseSchema = 'main',
  targetTable = 'cohort',
  settings = drSet,
  outputFolder = tempdir()
)

Compute fine the subjects that fail the dechallenge rechallenge study

Description

Compute fine the subjects that fail the dechallenge rechallenge study

Usage

computeRechallengeFailCaseSeriesAnalyses(
  connectionDetails = NULL,
  targetDatabaseSchema,
  targetTable,
  outcomeDatabaseSchema = targetDatabaseSchema,
  outcomeTable = targetTable,
  tempEmulationSchema = getOption("sqlRenderTempEmulationSchema"),
  settings,
  databaseId = "database 1",
  showSubjectId = FALSE,
  outputFolder,
  minCellCount = 0,
  ...
)

Arguments

connectionDetails

An object of type 'connectionDetails' as created using the [DatabaseConnector::createConnectionDetails()] function.

targetDatabaseSchema

Schema name where your target cohort table resides. Note that for SQL Server, this should include both the database and schema name, for example 'scratch.dbo'.

targetTable

Name of the target cohort table.

outcomeDatabaseSchema

Schema name where your outcome cohort table resides. Note that for SQL Server, this should include both the database and schema name, for example 'scratch.dbo'.

outcomeTable

Name of the outcome cohort table.

tempEmulationSchema

Some database platforms like Oracle and Impala do not truly support temp tables. To emulate temp tables, provide a schema with write privileges where temp tables can be created

settings

The settings for the timeToEvent study

databaseId

An identifier for the database (string)

showSubjectId

if F then subject_ids are hidden (recommended if sharing results)

outputFolder

A directory to save the results as csv files

minCellCount

The minimum cell value to display, values less than this will be replaced by -1

...

extra inputs

Value

An Andromeda::andromeda() object with the case series details of the failed rechallenge

See Also

Other DechallengeRechallenge: computeDechallengeRechallengeAnalyses(), createDechallengeRechallengeSettings()

Examples

conDet <- exampleOmopConnectionDetails()

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

computeRechallengeFailCaseSeriesAnalyses(
  connectionDetails = conDet,
  targetDatabaseSchema = 'main',
  targetTable = 'cohort',
  settings = drSet,
  outputFolder = tempdir()
)

Compute time to event study

Description

Compute time to event study

Usage

computeTimeToEventAnalyses(
  connectionDetails = NULL,
  targetDatabaseSchema,
  targetTable,
  outcomeDatabaseSchema = targetDatabaseSchema,
  outcomeTable = targetTable,
  tempEmulationSchema = getOption("sqlRenderTempEmulationSchema"),
  cdmDatabaseSchema,
  settings,
  databaseId = "database 1",
  outputFolder,
  minCellCount = 0,
  ...
)

Arguments

connectionDetails

An object of type 'connectionDetails' as created using the [DatabaseConnector::createConnectionDetails()] function.

targetDatabaseSchema

Schema name where your target cohort table resides. Note that for SQL Server, this should include both the database and schema name, for example 'scratch.dbo'.

targetTable

Name of the target cohort table.

outcomeDatabaseSchema

Schema name where your outcome cohort table resides. Note that for SQL Server, this should include both the database and schema name, for example 'scratch.dbo'.

outcomeTable

Name of the outcome cohort table.

tempEmulationSchema

Some database platforms like Oracle and Impala do not truly support temp tables. To emulate temp tables, provide a schema with write privileges where temp tables can be created

cdmDatabaseSchema

The database schema containing the OMOP CDM data

settings

The settings for the timeToEvent study

databaseId

An identifier for the database (string)

outputFolder

A directory to save the results as csv files

minCellCount

The minimum cell value to display, values less than this will be replaced by -1

...

extra inputs

Value

An Andromeda::andromeda() object containing the time to event results.

See Also

Other TimeToEvent: createTimeToEventSettings()

Examples

# example code

conDet <- exampleOmopConnectionDetails()

tteSet <- createTimeToEventSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

result <- computeTimeToEventAnalyses(
  connectionDetails = conDet,
  targetDatabaseSchema = 'main',
  targetTable = 'cohort',
  cdmDatabaseSchema = 'main',
  settings = tteSet,
  outputFolder = file.path(tempdir(), 'tte')
)

Create aggregate covariate study settings

Description

Create aggregate covariate study settings

Usage

createAggregateCovariateSettings(
  targetIds,
  outcomeIds,
  minPriorObservation = 0,
  outcomeWashoutDays = 0,
  riskWindowStart = 1,
  startAnchor = "cohort start",
  riskWindowEnd = 365,
  endAnchor = "cohort start",
  covariateSettings = FeatureExtraction::createCovariateSettings(useDemographicsGender =
    TRUE, useDemographicsAge = TRUE, useDemographicsAgeGroup = TRUE, useDemographicsRace
    = TRUE, useDemographicsEthnicity = TRUE, useDemographicsIndexYear = TRUE,
    useDemographicsIndexMonth = TRUE, useDemographicsTimeInCohort = TRUE,
    useDemographicsPriorObservationTime = TRUE, useDemographicsPostObservationTime =
    TRUE, useConditionGroupEraLongTerm = TRUE, useDrugGroupEraOverlapping = TRUE,
    useDrugGroupEraLongTerm = TRUE, useProcedureOccurrenceLongTerm = TRUE, 
    
    useMeasurementLongTerm = TRUE, useObservationLongTerm = TRUE,
    useDeviceExposureLongTerm = TRUE, useVisitConceptCountLongTerm = TRUE,
    useConditionGroupEraShortTerm = TRUE, useDrugGroupEraShortTerm = TRUE,
    useProcedureOccurrenceShortTerm = TRUE, useMeasurementShortTerm = TRUE,
    useObservationShortTerm = TRUE, useDeviceExposureShortTerm = TRUE,
    useVisitConceptCountShortTerm = TRUE, endDays = 0, longTermStartDays = -365,
    shortTermStartDays = -30),
  caseCovariateSettings = createDuringCovariateSettings(useConditionGroupEraDuring =
    TRUE, useDrugGroupEraDuring = TRUE, useProcedureOccurrenceDuring = TRUE,
    useDeviceExposureDuring = TRUE, useMeasurementDuring = TRUE, useObservationDuring =
    TRUE, useVisitConceptCountDuring = TRUE),
  casePreTargetDuration = 365,
  casePostOutcomeDuration = 365,
  extractNonCaseCovariates = TRUE
)

Arguments

targetIds

A list of cohortIds for the target cohorts

outcomeIds

A list of cohortIds for the outcome cohorts

minPriorObservation

The minimum time (in days) in the database a patient in the target cohorts must be observed prior to index

outcomeWashoutDays

Patients with the outcome within outcomeWashout days prior to index are excluded from the risk factor analysis

riskWindowStart

The start of the risk window (in days) relative to the 'startAnchor'.

startAnchor

The anchor point for the start of the risk window. Can be '"cohort start"' or '"cohort end"'.

riskWindowEnd

The end of the risk window (in days) relative to the 'endAnchor'.

endAnchor

The anchor point for the end of the risk window. Can be '"cohort start"' or '"cohort end"'.

covariateSettings

An object created using FeatureExtraction::createCovariateSettings

caseCovariateSettings

An object created using createDuringCovariateSettings

casePreTargetDuration

The number of days prior to case index we use for FeatureExtraction

casePostOutcomeDuration

The number of days prior to case index we use for FeatureExtraction

extractNonCaseCovariates

Whether to extract aggregate covariates and counts for patients in the targets and outcomes in addition to the cases

Value

A list with the settings

Examples

aggregateSetting <- createAggregateCovariateSettings(
  targetIds = c(1,2),
  outcomeIds = c(3),
  minPriorObservation = 365,
  outcomeWashoutDays = 90,
  riskWindowStart = 1,
  startAnchor = "cohort start",
  riskWindowEnd = 365,
  endAnchor = "cohort start",
  casePreTargetDuration = 365,
  casePostOutcomeDuration = 365
)

Create the settings for a large scale characterization study

Description

This function creates a list of settings for different characterization studies

Usage

createCharacterizationSettings(
  timeToEventSettings = NULL,
  dechallengeRechallengeSettings = NULL,
  aggregateCovariateSettings = NULL
)

Arguments

timeToEventSettings

A list of timeToEvent settings

dechallengeRechallengeSettings

A list of dechallengeRechallenge settings

aggregateCovariateSettings

A list of aggregateCovariate settings

Details

Specify one or more timeToEvent, dechallengeRechallenge and aggregateCovariate settings

Value

Returns the connection to the sqlite database

See Also

Other LargeScale: loadCharacterizationSettings(), runCharacterizationAnalyses(), saveCharacterizationSettings()

Examples

# example code

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

cSet <- createCharacterizationSettings(
  dechallengeRechallengeSettings = drSet
)

Create the results tables to store characterization results into a database

Description

This function executes a large set of SQL statements to create tables that can store results

Usage

createCharacterizationTables(
  connectionDetails,
  resultSchema,
  targetDialect = "postgresql",
  deleteExistingTables = TRUE,
  createTables = TRUE,
  tablePrefix = "c_",
  tempEmulationSchema = getOption("sqlRenderTempEmulationSchema")
)

Arguments

connectionDetails

The connectionDetails to a database created by using the function createConnectDetails in the DatabaseConnector package.

resultSchema

The name of the database schema that the result tables will be created.

targetDialect

The database management system being used

deleteExistingTables

If true any existing tables matching the Characterization result tables names will be deleted

createTables

If true the Characterization result tables will be created

tablePrefix

A string appended to the Characterization result tables

tempEmulationSchema

The temp schema used when the database management system is oracle

Details

This function can be used to create (or delete) Characterization result tables

Value

Returns NULL but creates the required tables into the specified database schema.

See Also

Other Database: createSqliteDatabase(), insertResultsToDatabase()

Examples

# create sqlite database
charResultDbCD <- createSqliteDatabase()

# create database results tables
createCharacterizationTables(
   connectionDetails = charResultDbCD,
   resultSchema = 'main'
 )

Create dechallenge rechallenge study settings

Description

Create dechallenge rechallenge study settings

Usage

createDechallengeRechallengeSettings(
  targetIds,
  outcomeIds,
  dechallengeStopInterval = 30,
  dechallengeEvaluationWindow = 30
)

Arguments

targetIds

A list of cohortIds for the target cohorts

outcomeIds

A list of cohortIds for the outcome cohorts

dechallengeStopInterval

An integer specifying the how much time to add to the cohort_end when determining whether the event starts during cohort and ends after

dechallengeEvaluationWindow

An integer specifying the period of time after the cohort_end when you cannot see an outcome for a dechallenge success

Value

A list with the settings

See Also

Other DechallengeRechallenge: computeDechallengeRechallengeAnalyses(), computeRechallengeFailCaseSeriesAnalyses()

Examples

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

Create during covariate settings

Description

Create during covariate settings

Usage

createDuringCovariateSettings(
  useConditionOccurrenceDuring = FALSE,
  useConditionOccurrencePrimaryInpatientDuring = FALSE,
  useConditionEraDuring = FALSE,
  useConditionGroupEraDuring = FALSE,
  useDrugExposureDuring = FALSE,
  useDrugEraDuring = FALSE,
  useDrugGroupEraDuring = FALSE,
  useProcedureOccurrenceDuring = FALSE,
  useDeviceExposureDuring = FALSE,
  useMeasurementDuring = FALSE,
  useObservationDuring = FALSE,
  useVisitCountDuring = FALSE,
  useVisitConceptCountDuring = FALSE,
  includedCovariateConceptIds = c(),
  addDescendantsToInclude = FALSE,
  excludedCovariateConceptIds = c(),
  addDescendantsToExclude = FALSE,
  includedCovariateIds = c()
)

Arguments

useConditionOccurrenceDuring

One covariate per condition in the condition_occurrence table starting between cohort start and cohort end. (analysis ID 109)

useConditionOccurrencePrimaryInpatientDuring

One covariate per condition observed as a primary diagnosis in an inpatient setting in the condition_occurrence table starting between cohort start and cohort end. (analysis ID 110)

useConditionEraDuring

One covariate per condition in the condition_era table starting between cohort start and cohort end. (analysis ID 217)

useConditionGroupEraDuring

One covariate per condition era rolled up to groups in the condition_era table starting between cohort start and cohort end. (analysis ID 218)

useDrugExposureDuring

One covariate per drug in the drug_exposure table between cohort start and end. (analysisId 305)

useDrugEraDuring

One covariate per drug in the drug_era table between cohort start and end. (analysis ID 417)

useDrugGroupEraDuring

One covariate per drug rolled up to ATC groups in the drug_era table between cohort start and end. (analysis ID 418)

useProcedureOccurrenceDuring

One covariate per procedure in the procedure_occurrence table between cohort start and end. (analysis ID 505)

useDeviceExposureDuring

One covariate per device in the device exposure table starting between cohort start and end. (analysis ID 605)

useMeasurementDuring

One covariate per measurement in the measurement table between cohort start and end. (analysis ID 713)

useObservationDuring

One covariate per observation in the observation table between cohort start and end. (analysis ID 805)

useVisitCountDuring

The number of visits observed between cohort start and end. (analysis ID 926)

useVisitConceptCountDuring

The number of visits observed between cohort start and end, stratified by visit concept ID. (analysis ID 927)

includedCovariateConceptIds

A list of concept IDs that should be used to construct covariates.

addDescendantsToInclude

Should descendant concept IDs be added to the list of concepts to include?

excludedCovariateConceptIds

A list of concept IDs that should NOT be used to construct covariates.

addDescendantsToExclude

Should descendant concept IDs be added to the list of concepts to exclude?

includedCovariateIds

A list of covariate IDs that should be restricted to.

Details

creates an object specifying how during covariates should be constructed from data in the CDM model.

Value

An object of type covariateSettings, to be used in other functions.

See Also

Other CovariateSetting: getDbDuringCovariateData()

Examples

settings <- createDuringCovariateSettings(
  useConditionOccurrenceDuring = TRUE,
  useConditionOccurrencePrimaryInpatientDuring = FALSE,
  useConditionEraDuring = FALSE,
  useConditionGroupEraDuring = FALSE
)

Create an sqlite database connection

Description

This function creates a connection to an sqlite database

Usage

createSqliteDatabase(sqliteLocation = tempdir())

Arguments

sqliteLocation

The location of the sqlite database

Details

This function creates a sqlite database and connection

Value

Returns the connection detail object to the sqlite database

See Also

Other Database: createCharacterizationTables(), insertResultsToDatabase()

Examples

charResultDbCD <- createSqliteDatabase()

Create time to event study settings

Description

Create time to event study settings

Usage

createTimeToEventSettings(targetIds, outcomeIds)

Arguments

targetIds

A list of cohortIds for the target cohorts

outcomeIds

A list of cohortIds for the outcome cohorts

Value

An list with the time to event settings

See Also

Other TimeToEvent: computeTimeToEventAnalyses()

Examples

# example code

tteSet <- createTimeToEventSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

create a connection detail for an example GI Bleed dataset from Eunomia

Description

This returns an object of class 'ConnectionDetails' that lets you connect via 'DatabaseConnector::connect()' to the example database.

Usage

exampleOmopConnectionDetails(exdir = tempdir())

Arguments

exdir

a directory to unzip the example OMOP database into. Default is tempdir().

Details

Finds the location of the example database in the package and calls 'DatabaseConnector::createConnectionDetails' to create a 'ConnectionDetails' object for connecting to the database.

Value

An object of class 'ConnectionDetails' with the details to connect to the example OHDSI OMOP CDM database

Examples

conDet <- exampleOmopConnectionDetails()

connectionHandler <- ResultModelManager::ConnectionHandler$new(conDet)

Extracts covariates that occur during a cohort

Description

Extracts covariates that occur during a cohort

Usage

getDbDuringCovariateData(
  connection,
  oracleTempSchema = NULL,
  cdmDatabaseSchema,
  cdmVersion = "5",
  cohortTable = "#cohort_person",
  rowIdField = "subject_id",
  aggregated = TRUE,
  cohortIds = c(-1),
  covariateSettings,
  minCharacterizationMean = 0,
  tempEmulationSchema = getOption("sqlRenderTempEmulationSchema"),
  ...
)

Arguments

connection

The database connection

oracleTempSchema

The temp schema if using oracle

cdmDatabaseSchema

The schema of the OMOP CDM data

cdmVersion

version of the OMOP CDM data

cohortTable

the table name that contains the target population cohort

rowIdField

string representing the unique identifier in the target population cohort

aggregated

whether the covariate should be aggregated

cohortIds

cohort id for the target cohort

covariateSettings

settings for the covariate cohorts and time periods

minCharacterizationMean

the minimum value for a covariate to be extracted

tempEmulationSchema

Some database platforms like Oracle and Impala do not truly support temp tables. To emulate temp tables, provide a schema with write privileges where temp tables can be created

...

additional arguments from FeatureExtraction

Details

The user specifies a what during covariates they want and this executes them using FE

Value

A 'FeatureExtraction' covariateData object containing the during covariates based on user settings

See Also

Other CovariateSetting: createDuringCovariateSettings()

Examples

conDet <- exampleOmopConnectionDetails()
connection <- DatabaseConnector::connect(conDet)

settings <- createDuringCovariateSettings(
  useConditionOccurrenceDuring = TRUE,
  useConditionOccurrencePrimaryInpatientDuring = FALSE,
  useConditionEraDuring = FALSE,
  useConditionGroupEraDuring = FALSE
)

duringData <- getDbDuringCovariateData(
  connection <- connection,
  cdmDatabaseSchema = 'main',
  cohortIds = 1,
  covariateSettings = settings,
  cohortTable = 'cohort'
)

Upload the results into a result database

Description

This function uploads results in csv format into a result database

Usage

insertResultsToDatabase(
  connectionDetails,
  schema,
  resultsFolder,
  tablePrefix = "",
  csvTablePrefix = "c_"
)

Arguments

connectionDetails

The connection details to the result database

schema

The schema for the result database

resultsFolder

The folder containing the csv results

tablePrefix

A prefix to append to the result tables for the characterization results

csvTablePrefix

The prefix added to the csv results - default is 'c_'

Details

Calls ResultModelManager uploadResults function to upload the csv files

Value

Returns the connection to the sqlite database

See Also

Other Database: createCharacterizationTables(), createSqliteDatabase()

Examples

# generate results into resultsFolder
conDet <- exampleOmopConnectionDetails()

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

cSet <- createCharacterizationSettings(
  dechallengeRechallengeSettings = drSet
)

runCharacterizationAnalyses(
  connectionDetails = conDet,
  targetDatabaseSchema = 'main',
  targetTable = 'cohort',
  outcomeDatabaseSchema = 'main',
  outcomeTable = 'cohort',
  cdmDatabaseSchema = 'main',
  characterizationSettings = cSet,
  outputDirectory = tempdir()
)

# create sqlite database
charResultDbCD <- createSqliteDatabase()

# create database results tables
createCharacterizationTables(
   connectionDetails = charResultDbCD,
   resultSchema = 'main'
 )

# insert results
insertResultsToDatabase(
 connectionDetails = charResultDbCD,
 schema = 'main',
 resultsFolder = tempdir()
)

Load the characterization settings previously saved as a json file

Description

This function converts the json file back into an R object

Usage

loadCharacterizationSettings(fileName)

Arguments

fileName

The location of the the json settings

Details

Input the directory containing the 'characterizationSettings.json' file and load the settings into R

Value

Returns the json settings as an R object

See Also

Other LargeScale: createCharacterizationSettings(), runCharacterizationAnalyses(), saveCharacterizationSettings()

Examples

# example code

setPath <- file.path(tempdir(), 'charSet.json')

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

cSet <- createCharacterizationSettings(
  dechallengeRechallengeSettings = drSet
)

saveCharacterizationSettings(
  settings = cSet,
  fileName = setPath
)

setting <- loadCharacterizationSettings(setPath)

execute a large-scale characterization study

Description

Specify the database connection containing the CDM data, the cohort database schemas/tables, the characterization settings and the directory to save the results to

Usage

runCharacterizationAnalyses(
  connectionDetails,
  targetDatabaseSchema,
  targetTable,
  outcomeDatabaseSchema,
  outcomeTable,
  tempEmulationSchema = getOption("sqlRenderTempEmulationSchema"),
  cdmDatabaseSchema,
  characterizationSettings,
  outputDirectory,
  executionPath = file.path(outputDirectory, "execution"),
  csvFilePrefix = "c_",
  databaseId = "1",
  showSubjectId = FALSE,
  minCellCount = 0,
  incremental = TRUE,
  threads = 1,
  minCharacterizationMean = 0.01
)

Arguments

connectionDetails

The connection details to the database containing the OMOP CDM data

targetDatabaseSchema

Schema name where your target cohort table resides. Note that for SQL Server, this should include both the database and schema name, for example 'scratch.dbo'.

targetTable

Name of the target cohort table.

outcomeDatabaseSchema

Schema name where your outcome cohort table resides. Note that for SQL Server, this should include both the database and schema name, for example 'scratch.dbo'.

outcomeTable

Name of the outcome cohort table.

tempEmulationSchema

Some database platforms like Oracle and Impala do not truly support temp tables. To emulate temp tables, provide a schema with write privileges where temp tables can be created

cdmDatabaseSchema

The schema with the OMOP CDM data

characterizationSettings

The study settings created using createCharacterizationSettings

outputDirectory

The location to save the final csv files to

executionPath

The location where intermediate results are saved to

csvFilePrefix

A string to append the csv files in the outputDirectory

databaseId

The unique identifier for the cdm database

showSubjectId

Whether to include subjectId of failed rechallenge case series or hide

minCellCount

The minimum count value that is calculated

incremental

If TRUE then skip previously executed analyses that completed

threads

The number of threads to use when running aggregate covariates

minCharacterizationMean

The minimum mean threshold to extract when running aggregate covariates

Details

The results of the characterization will be saved into an sqlite database inside the specified saveDirectory

Value

Multiple csv files in the outputDirectory.

See Also

Other LargeScale: createCharacterizationSettings(), loadCharacterizationSettings(), saveCharacterizationSettings()

Examples

conDet <- exampleOmopConnectionDetails()

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

cSet <- createCharacterizationSettings(
  dechallengeRechallengeSettings = drSet
)

runCharacterizationAnalyses(
  connectionDetails = conDet,
  targetDatabaseSchema = 'main',
  targetTable = 'cohort',
  outcomeDatabaseSchema = 'main',
  outcomeTable = 'cohort',
  cdmDatabaseSchema = 'main',
  characterizationSettings = cSet,
  outputDirectory = tempdir()
)

Save the characterization settings as a json

Description

This function converts the settings into a json object and saves it

Usage

saveCharacterizationSettings(settings, fileName)

Arguments

settings

An object of class characterizationSettings created using createCharacterizationSettings

fileName

The location to save the json settings

Details

Input the characterization settings and output a json file to a file named 'characterizationSettings.json' inside the saveDirectory

Value

Returns the location of the directory containing the json settings

See Also

Other LargeScale: createCharacterizationSettings(), loadCharacterizationSettings(), runCharacterizationAnalyses()

Examples

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

cSet <- createCharacterizationSettings(
  dechallengeRechallengeSettings = drSet
)

saveCharacterizationSettings(
  settings = cSet,
  fileName = file.path(tempdir(), 'cSet.json')
)

viewCharacterization - Interactively view the characterization results

Description

This is a shiny app for viewing interactive plots and tables

Usage

viewCharacterization(resultFolder, cohortDefinitionSet = NULL)

Arguments

resultFolder

The location of the csv results

cohortDefinitionSet

The cohortDefinitionSet extracted using webAPI

Details

Input is the output of ...

Value

Opens a shiny app for interactively viewing the results

Examples

conDet <- exampleOmopConnectionDetails()

drSet <- createDechallengeRechallengeSettings(
  targetIds = c(1,2),
  outcomeIds = 3
)

cSet <- createCharacterizationSettings(
  dechallengeRechallengeSettings = drSet
)

runCharacterizationAnalyses(
  connectionDetails = conDet,
  targetDatabaseSchema = 'main',
  targetTable = 'cohort',
  outcomeDatabaseSchema = 'main',
  outcomeTable = 'cohort',
  cdmDatabaseSchema = 'main',
  characterizationSettings = cSet,
  outputDirectory = file.path(tempdir(),'view')
)

viewCharacterization(
  resultFolder = file.path(tempdir(),'view')
)